Agentic AI Frequently Asked Questions

· 3 min read
Agentic AI Frequently Asked Questions

What is agentic AI, and how does it differ from traditional AI in cybersecurity? Agentic AI is a term used to describe autonomous, goal-oriented, systems that are able to perceive their environment, take decisions, and act to achieve specific goals. Unlike  securing ai rollout , which is often rule-based or reactive, agentic AI systems can learn, adapt, and operate with a degree of independence. In cybersecurity, agentic AI enables continuous monitoring, real-time threat detection, and proactive response capabilities.
How can agentic AI enhance application security (AppSec) practices? Agentic AI can revolutionize AppSec practices by integrating intelligent agents into the software development lifecycle (SDLC). These agents can continuously monitor code repositories, analyze commits for vulnerabilities, and leverage advanced techniques like static code analysis, dynamic testing, and machine learning to identify a wide range of security issues. Agentic AI can also prioritize vulnerabilities based on their real-world impact and exploitability, providing contextually aware insights for remediation. What is a code property graph (CPG), and why is it important for agentic AI in AppSec?  ml security testing  (CPG) is a rich representation of a codebase that captures relationships between various code elements, such as functions, variables, and data flows. Agentic AI can gain a deeper understanding of the application's structure and security posture by building a comprehensive CPG. This contextual awareness allows the AI to make better security decisions and prioritize vulnerabilities. It can also generate targeted fixes. What are the benefits of AI-powered automatic vulnerabilities fixing? AI-powered automatic vulnerabilities fixing uses the CPG's deep understanding of the codebase to identify vulnerabilities and generate context-aware fixes that do not break existing features. The AI analyses the code around the vulnerability to understand the intended functionality and then creates a fix without breaking existing features or introducing any new bugs. This method reduces the amount of time it takes to discover a vulnerability and fix it. It also relieves development teams and provides a reliable and consistent approach to fixing vulnerabilities.  Some potential challenges and risks include:

Ensure trust and accountability for autonomous AI decisions
Protecting AI systems against adversarial attacks and data manipulation
Maintaining accurate code property graphs
Ethics and social implications of autonomous systems
Integrating AI agentic into existing security tools
Organizations can ensure the trustworthiness and accountability of agentic AI by establishing clear guidelines and oversight mechanisms. This includes implementing robust testing and validation processes to verify the correctness and safety of AI-generated fixes, maintaining human oversight and intervention capabilities, and fostering a culture of transparency and responsible AI development. Regular audits and continuous monitoring can help to build trust in autonomous agents' decision-making processes.  What are some best practices for developing and deploying secure agentic AI systems? The following are some of the best practices for developing secure AI systems:

Adopting safe coding practices throughout the AI life cycle and following security guidelines
Protect against attacks by implementing adversarial training techniques and model hardening.
Ensuring data privacy and security during AI training and deployment


Conducting thorough testing and validation of AI models and generated outputs
Maintaining transparency and accountability in AI decision-making processes
AI systems should be regularly updated and monitored to ensure they are able to adapt to new threats and vulnerabilities.
How can AI agents help organizations stay on top of the ever-changing threat landscape? Agentic AI can help organizations stay ahead of the ever-changing threat landscape by continuously monitoring networks, applications, and data for emerging threats. These autonomous agents can analyze vast amounts of security data in real-time, identifying new attack patterns, vulnerabilities, and anomalies that might evade traditional security controls. By learning from each interaction and adapting their threat detection models, agentic AI systems can provide proactive defense against evolving cyber threats, enabling organizations to respond quickly and effectively. What role does machine-learning play in agentic AI? Machine learning is a critical component of agentic AI in cybersecurity. It enables autonomous agents to learn from vast amounts of security data, identify patterns and correlations, and make intelligent decisions based on that knowledge.  agentic predictive security ai  learning algorithms power various aspects of agentic AI, including threat detection, vulnerability prioritization, and automatic fixing. Machine learning improves agentic AI's accuracy, efficiency and effectiveness by continuously learning and adjusting. How can agentic AI increase the efficiency and effectiveness in vulnerability management processes. Agentic AI can streamline vulnerability management processes by automating many of the time-consuming and labor-intensive tasks involved. Autonomous agents are able to continuously scan codebases and identify vulnerabilities. They can then prioritize these vulnerabilities based on the real-world impact of each vulnerability and their exploitability. The agents can generate context-aware solutions automatically, which reduces the amount of time and effort needed for manual remediation. By providing real-time insights and actionable recommendations, agentic AI enables security teams to focus on high-priority issues and respond more quickly and effectively to potential threats. Monitor and audit AI systems regularly to identify any potential biases or errors. Make necessary adjustments for optimal performance.